Skip to Content
Faculty and Staff Resources

Stem Cells from Patients Make 'Early Retina in a Dish'

Madison, Wisconsin - Soon, some treatments for blinding eye diseases might be developed and tested using retina-like tissues produced from the patient's own skin, thanks to a series of discoveries reported by a team of University of Wisconsin-Madison stem cell researchers.


retinal structureThe team, led by stem cell scientist and ophthalmologist Dr. David Gamm of the UW School of Medicine and Public Health and former UW scientist Dr. Jason Meyer, used human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells to generate three-dimensional structures that are similar to those present at the earliest stages of retinal development.


The Gamm laboratory, based at UW-Madison's Waisman Center, isolated these early retinal structures from other cell groups and grew them in batches in the laboratory, where they produced major retinal cell types, including photoreceptors and retinal pigment epithelium (RPE).


Importantly, cells from these structures matured and responded appropriately to signals involved in normal retinal function, making them potentially valuable not only for studying how the human retina develops, but also how to keep it working in the face of disease.


To demonstrate this potential, UW-Madison researchers created early retinal structures from skin cells of a woman with a rare blinding disease - gyrate atrophy - and directed them to make RPE, the cell type primarily affected by this disorder. Tests on these created cells showed that high doses of vitamin B6, a compound sometimes used to treat gyrate atrophy, could overcome the gene mutation that led to her disease.


In a second test, scientists also corrected the problem by "swapping out" the patient's defective gene for a correct copy using a process described earlier this year by fellow research team members Dr. Sara Howden and Dr. James Thomson of the Morgridge Institute.


The results show the clinical promise of stem cell research, but Gamm is careful to point out that much work is left to be done.


"However, it is remarkable to think that something resembling the retina, one of the most specialized tissues in the human body, may one day be generated from a person's skin," says Gamm, who is encouraged by results from Dr. Yoshiki Sasai's lab in Kobe, Japan, demonstrating that mouse ES cells could produce highly complex retinal tissues in a dish.


Even with current technology, human iPS cells are capable of advancing the field of personalized medicine by providing access to cells that cannot be safely removed from living patients. In turn, these custom cells can be used to test effects of cutting edge treatments (such as gene therapy) or established medications.


"In our case, the individual with gyrate atrophy was thought to be unresponsive to vitamin B6 therapy based on traditional tests, but examination of her own RPE suggested otherwise," Gamm says. "This is another glimpse of how we might use stem cells to help patients in the foreseeable future."


The research is published online in the journal Stem Cells.


Gamm's research team included:

  • Dr. Jason S. Meyer, who is now on faculty at IUPUI
  • Lynda Wright, Kyle Wallace and Amelia Gerner, as well as Dr. James Thomson and Dr. Sara Howden of the Morgridge Institute for Research at UW-Madison
  • Dr. Bikash Pattnaik, of the UW School of Medicine and Public Health's pediatrics department.

Gamm is assistant professor of ophthalmology and visual sciences and a member of the UW Eye Research Institute.


The research was supported by the Foundation Fighting Blindness Wynn-Gund Translational Research Award, the National Institutes of Health, the Ziegler Foundation, the Eye Research Institute and the Retina Research Foundation.

Date Published: 06/15/2011

News tag(s):  researchstem cellsophthalmologydavid m gamm

News RSS Feed

Stem Cells from Patients Make 'Early Retina in a Dish'

Last updated: 07/15/2016
Website Feedback
Copyright © 2017 University of Wisconsin School of Medicine and Public Health
Use of this site signifies your agreement to the terms and conditions